关于阻火器的工作原理,目前主要有两种观点:一是基于传热作用;一是基于器壁效应。
1、传热作用
燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下就可以阻止火焰的蔓延。当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰。设计阻火器内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。
2、器壁效应
燃烧与爆炸并不是分子间直接反应,而是受外来能量的激发,分子键遭到破坏产生活化分子,活化分子又分裂为寿命短但却很活泼的自由基,自由基与其它分子相撞,生成新的产物,同时也产生新的自由基再继续与其它分子发生反应。当燃烧的可燃气通过阻火元件的狭窄通道时,自由基与通道壁的碰撞几率增大,参加反应的自由基减少。当阻火器的通道窄到一定程度时,自由基与通道壁的碰撞占主导地位,由于自由基数量急剧减少,反应不能继续进行,也即燃烧反应不能通过阻火器继续传播。
3、最大实验安全间隙—MESG值
火焰通过阻火元件的细小通道并在通道内降温。当火焰被分割小到一定程度时,经通道移走的热量足以将温度降到可燃物燃点以下,使火焰熄灭。或由器壁效应解释,当通道窄到一定程度时,自由基与管道壁的碰撞占主导地位,自由基大量减少,燃烧反应不能继续进行。因此,把在一定条件下(0.1MPa,20℃)刚好能够使火焰熄灭的通道尺寸定义为“最大实验安全间隙”(MESG,Maximum Experimental Safe Gap)。阻火元件的通道尺寸是决定阻火器性能的关键因素,不同气体具有不同的MESG值。
因此,在选择阻火器时,应根据可燃气体的组成确定其MESG值。在具体选择时,又根据MESG值将气体划分为几个等级。目前国际上经常采用两类方法。一是美国全国电气协会(NEC)的分类法,它根据气体的MESG值将气体分为四个等级(A、B、C、D);另一类是国际电工协会(IEC)的方法,它也将气体分为四个等级(IIC、IIB、IIA及I)。两种标准划分的各类气体的MESG值及测试气体如表1所示。
表1 两种MESG分类标准
NEC | IEC | MESG/mm | 测试气体 |
A | IIC | 0.25 | 乙炔 |
B | IIC | 0.28 | 氢气 |
C | IIB | 0.65 | 乙烯 |
D | IIA | 0.90 | 丙烯 |
G | I | 1.12 | 甲烷 |
这样,在选用阻火器时,即可在设计规定使用的规范中首先查出所用可燃气体的等级,然后根据该组气体对应的MESG值来选择相应的阻火元件。
地 址:上海市金山区兴塔工业区
咨询电话:021-57362601
手机号码:13816357694
电子邮箱:hanyuev@163.com
网 址:http://www.guolvqic.com